
# Bridge Controller: Guards of "old" Events 1st Refinement



constants: d

axioms:

 $axm0_1: d \in \mathbb{N}$ 

 $axm0_2: d > 0$ 

variables: a, b, c

invariants:

inv1 $_{-}$ 1 :  $a \in \mathbb{N}$ 

inv1\_2 :  $b \in \mathbb{N}$ 

inv1\_3 :  $c \in \mathbb{N}$ 

 $inv1_4: a+b+c=n$ 

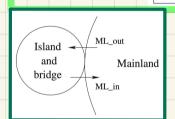
**inv1**\_**5**:  $a = 0 \lor c = 0$ 

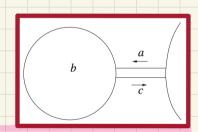
ML\_out: A car exits mainland (getting on the bridge).

ML\_out when ?? then a := a + 1 end

ML\_in: A car enters mainland (getting off the bridge).

## Bridge Controller: Abstract vs. Concrete State Transitions


#### Abstract m0


variables: n

invariants:  $n \in \mathbb{N}$ 

 $inv0_2 : n < d$ 

ML\_out **when**  *n* < *d*  **then**  *n* := *n* + 1 **end**  ML\_in
when
n > 0
then
n := n - 1
end





#### Concrete m1

variables: a, b, c

invariants:  $\mathbf{inv1}_{-1} : \mathbf{a} \in \mathbb{N}$ 

 $inv1_2: b \in \mathbb{N}$ 

inv1\_3 : *c* ∈ N

**inv1\_4**: a+b+c=n**inv1\_5**:  $a=0 \lor c=0$  c = 0 **then** a := a + 1 **end** 

a+b < d

ML\_out

when

ML\_in when c > 0 then c := c - 1 end

d = 2 n =

d = 2n initialized to 0

#### Scenario

- car leaving ML
- car entering ML

d = 2 a, b, c initialized to 0



### Before-After Predicates of Event Actions: 1st Refinement

 $\begin{array}{c|c} \mathsf{ML\_in} \\ \mathbf{when} \\ 0 < c \\ \mathbf{then} \\ c := c-1 \\ \mathbf{end} \end{array}$ 

 $egin{aligned} \mathsf{ML\_out} \\ \mathbf{when} \\ a+b < d \\ c = 0 \\ \mathbf{then} \\ a := a+1 \\ \mathbf{end} \end{aligned}$ 

Pre-StatePost-StateSate Transition

Before–after  $a'=a \ \land \ b'=b \ \land$  predicates c'=c-1

$$\begin{vmatrix} a' = a + 1 & \land & b' = b \land \\ c' = c & \end{vmatrix}$$

### States, Invariants, Events: Abstract vs. Concrete

### Abstract mo

variables: n

invariants:

inv0 1 :  $n \in \mathbb{N}$ inv0.2: n < d ML out when n < d

then

n := n + 1end

then n := n - 1end

 $ML_{in}$ 

when

then

c > 0

n > 0

 $ML_{in}$ 

when

axioms:

 $axm0_1: d \in \mathbb{N}$ axm0 2: d > 0

constants: d

Concrete m1

variables: a, b, c

invariants:

 $inv1_1: a \in \mathbb{N}$ 

inv1\_2:  $b \in \mathbb{N}$ inv1 3 :  $c \in \mathbb{N}$ 

inv1 4: a+b+c=n

**inv1\_5**:  $a = 0 \lor c = 0$ 

ML out when a+b < d

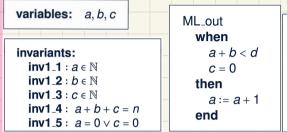
c = 0then

a := a + 1end

c := c - 1end

### PO Rule of Invariant Preservation in Refinement: Components






ML out when n < dthen

when n > 0then n := n + 1n := n - 1end end

ML in

#### Concrete m1



ML in when c > 0then c := c - 1end

v and v': abstract variables in pre-/post-states w and w': concrete variables in pre-/post-states G(c, v): an abstract event's quards H(c, w): a concrete event's quards

I(c, v): list of abstract invariants

J(c, v, w): list of concrete invariants

E(c, v): an abstract event's effect F(c, w): a concrete event's effect

# PO/VC Rule of Guard Strengthening: Sequents

#### Abstract m0

variables: n

invariants: inv0\_1 :  $n \in \mathbb{N}$ inv0\_2 :  $n \le d$  ML\_out **when**  *n* < *d*  **then**  *n* := *n* + 1 **end**  ML\_in when n > 0 then n := n − 1 end

ML\_in

when

then

end

c > 0

c := c - 1

#### Concrete m1

variables: a, b, c

invariants: inv1 1 :  $a \in \mathbb{N}$ 

 $inv1_2: b \in \mathbb{N}$ 

inv1\_3 :  $c \in \mathbb{N}$ inv1\_4 : a+b+c=n

a + b + c = n a + b + c = na + b + c = n ML\_out when a + b < d c = 0 then a := a + 1

end

A(c)  $I(c, \mathbf{v})$   $J(c, \mathbf{v}, \mathbf{w})$   $H(c, \mathbf{w})$   $\vdash$   $G_i(c, \mathbf{v})$ 

Q. How many PO/VC rules for model m1?

## Discharging POs of m1: Guard Strengthening in Refinement

ML\_out/GRD

 $d \in \mathbb{N}$ d > 0 $n \in \mathbb{N}$ n < d $a \in \mathbb{N}$  $b \in \mathbb{N}$  $\boldsymbol{c} \in \mathbb{N}$ a+b+c=n $a = 0 \lor c = 0$ a+b < dc = 0n < d

 $\frac{H1 \vdash G}{H1, H2 \vdash G} \quad MON$ 

 $\frac{H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})}{H(\mathbf{E}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{E})} \quad \mathbf{EQ\_LR}$ 

 $H,P \vdash P$ 

### Discharging POs of m1: Guard Strengthening in Refinement

ML\_in/GRD

 $d \in \mathbb{N}$ d > 0 $n \in \mathbb{N}$ n < d $a \in \mathbb{N}$  $b \in \mathbb{N}$  $\boldsymbol{c} \in \mathbb{N}$ a+b+c=n $a = 0 \lor c = 0$ c > 0

n > 0

 $\frac{H1 \vdash G}{H1, H2 \vdash G} \quad MON$   $H(F), E = F \vdash P(F)$ 

 $H,P \vdash P$  HYP  $\bot \vdash P$  FALSE\_L

 $H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})$   $H(\mathbf{E}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{E})$ 

- EQ\_LR

 $H,P \vdash R \qquad H,Q \vdash R$   $H,P \lor Q \vdash R$ 

– OR₋L